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Droplet motion in microfluidic networks: Hydrodynamic interactions
and pressure-drop measurements

D. A. Sessoms,1 M. Belloul,1 W. Engl,2 M. Roche,1 L. Courbin,1 and P. Panizza'
IIPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France
ZCPMOH, UMR CNRS 5798, Université Bordeaux I, 33400 Talence, France
(Received 26 March 2009; published 31 July 2009)

We present experimental, numerical, and theoretical studies of droplet flows in hydrodynamic networks.
Using both millifluidic and microfluidic devices, we study the partitioning of monodisperse droplets in an
asymmetric loop. In both cases, we show that droplet traffic results from the hydrodynamic feedback due to the
presence of droplets in the outlet channels. We develop a recently-introduced phenomenological model [W.
Engl ef al., Phys. Rev. Lett. 95, 208304 (2005)] and successfully confront its predictions to our experimental
results. This approach offers a simple way to measure the excess hydrodynamic resistance of a channel filled
with droplets. We discuss the traffic behavior and the variations in the corresponding hydrodynamic resistance
length L, and of the droplet mobility B, as a function of droplet interdistance and confinement for channels

having circular or rectangular cross sections.
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I. INTRODUCTION

Microfluidic technology permits the handling of very
small volumes of fluids, with a high degree of control and
reproducibility [1,2]. Moreover, this technique offers the pos-
sibility to form nanoliter droplets of uniform size. The pros-
pects offered by droplet microfluidics are numerous and con-
cern many fields [3,4]. In materials science, for instance, the
potential of microfluidic synthesis stems from the continuous
production of monodisperse droplets and the ability to ma-
nipulate and functionalize each object independently on line
[5]. This approach thus offers a unique route to the synthesis
of calibrated dispersed materials in sizes typically ranging
from ten to a few hundred micrometers, with excellent and
uncomparable control over size distribution, shape, and in-
ternal structure. Examples of newly fabricated materials in-
clude polymer particles with nonspherical shapes [6,7], ar-
mored bubbles [8], core shells [9], Janus particles [10], and
double emulsions [11,12]. The use of droplets as independent
single microreactors also offers large promises for the devel-
opment of lab-on-a-chip devices used for combinatorial
chemistry or high-throughput screening [13,14].

A necessary condition for the successful and reliable
achievement of these applications is to generate many mono-
disperse droplets (i.e., individual reactors) that do not lose
their integrity while flowing through the system and to con-
trol their traffic in the network. However, the presence of
nodes and often loops in the microfluidic network notably
affect the complexity of the flow behavior of droplets
[15-18]. In a recent paper [19], we studied the behavior of
droplets in millimeter-size capillary tubes and investigated
their partitioning into two outlet channels at a simple 7 junc-
tion. We observed that a droplet arriving at a junction, if it
does not break, usually goes to the outlet characterized by
the highest flow rate. Since droplets can increase hydrody-
namic resistance of a channel, the presence of droplets down-
stream in each outlet arm can affect the respective flow rates
and, therefore, the partitioning at the junction. This collective
hydrodynamic feedback modulated by the increased flow re-
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sistance induced by the droplets can alter the probability of
partitioning and, thus, governs the traffic in capillary tubes.

Here, we build upon recent investigations to (i) further
extend and describe our previously introduced theoretical
framework [19] of traffic flows in microfluidic networks, (ii)
show how this model can be used to analyze our experimen-
tal results and thus to obtain the two key variables necessary
to describe droplet flow in a channel, namely, the hydrody-
namic resistance length of a droplet and its mobility in a
channel, and (iii) discuss the different values found for these
parameters when using axisymmetric or rectangular cross-
section channels and their variations with the droplet con-
finement.

Our paper is presented as follows. In the first section, we
describe in detail a phenomenological model of droplet
transport in a linear channel at low Reynolds and capillary
numbers, and we check its validity by performing systematic
experiments using an axisymmetric millifluidic device.

The second section of the paper is devoted to the study of
the repartition of droplets at an asymmetric microfluidic loop
or, equivalently, a simple T junction. We first perform nu-
merical simulations based on our derived model of droplet
transport in a linear channel, and we use a simple rule for the
choice of direction of a droplet at the inlet junction of the
loop. With a result obtained from the simulations, we derive
a straightforward analytical expression describing traffic
flow in such a configuration. This simple theoretical model is
then validated by systematic microfluidic experiments.

II. TRANSPORT OF DROPLETS IN A CONSTANT
SECTION TUBE

A. Phenomenological model

Most microfluidic digital applications involve the genera-
tion of periodic trains of monodisperse droplets [20-26]. To
address the behavior of such flows in complex hydrodynamic
networks, a necessary step is first to describe and understand
transport flows in a simple channel. We model such flows in
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FIG. 1. (Color online) Schematic of the flow model. The pres-
sure drop AP occurring across a circular channel of length L and
radius r, results in the flow of the continuous and dispersed phases
(viscosities 7, and 7, respectively). The presence of the dispersed
phase in the form of droplets of radius r separated by a distance A
modifies the flow behavior over a length € around each droplet. The
speeds of the modified and unmodified flow regions are given by V,
and V7, respectively, while the droplet speed is U,. A schematic of
the pressure drops in the distinct regions is also shown.

constant cross section S circular conduits at low capillary and
Reynolds numbers as follows. First, because of the flow pe-
riodicity, we consider the flow only over a channel portion of
length X, corresponding to the droplet interdistance (see Fig.
1). Providing that \ is sufficiently large, so that the droplets
do not interact hydrodynamically, we may assume that each
droplet modifies the Poiseuille flow only over a small region
of length € <\ (see the shaded area on Fig. 1). We expect €
to be, at most, on the order of the size of the channel r..
Within this simple picture, we decompose the flow in two
distinct fluid regions: the region around the droplet and the
interdroplet region of length N\—¢, where the flow is Poi-
seuille type.

By assuming for each region that Darcy’s laws hold, that
is, to say that the velocity of a fluid element is proportional
to the pressure drop applied to it, one obtains, for the region
altered by the presence of the droplet, the following two
equations:

AP
V= KeT‘, (1)
and
AP
U= Kd7€, (2)

with U, and V, as the velocity of the droplet and the mean
velocity of the fluid surrounding it, and with K; and K, as
two constants that depend on the details of the geometry on
), the droplet volume, and on the two viscosities 7, and 7,,
respectively. For the other region, one finds a similar rela-
tionship for V7, the continuous phase velocity,

AP, ¢

V=K .
S )

(3)

The fluid incompressibility leads to the following relation:
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Q Q
T=VTS= S_? V€+?Ud, (4)

where Q7 is the total flow rate. By inserting Egs. (1) and (2)
in Eq. (4), a straightforward derivation shows that the droplet
velocity varies accordingly to

Or

Ud = ,8? 5 (5)
where B is a dimensionless coefficient given by
1
B=% o[ &\ (6)
wri(-%)

To obtain an expression for the pressure drop in the chan-
nel, we proceed as follows. Since the pressure drop over a
tube portion of length X is the sum of the pressure drops over
the two fluid regions,

APA:AP€+AP)\_€, (7)
a simple calculation yields
N 1
| .
S LK K, K

Then, by considering that the pressure drop for a length L
of the channel is simply given by AP:%AP)\, for the hydro-
dynamic resistance one obtains a simple relationship of the

type,
AP 1 L¢( BK L+nL
—=—|:L+—<B——1>:|=_n d, )
Or KS N\ Ky KS
where n=L/N\ is the number of droplets in the channel and
K
Ld=€<'8——1> (10)
Ky

is a constant having dimension of a length. L, represents the
excess length added by each droplet to the channel due to its
hydrodynamic resistance. As a simple first approximation,
we have neglected the U;'B dependence of the hydrody-
namic resistance due to recirculation around the caps of the
droplets [27-29] in our model; nevertheless, in the range of
capillary numbers used in this work, the dominant contribu-
tion to the resistance is the dissipation of the droplets them-
selves [15]. This observation is also obtained for bubbles
flowing in rectangular microfluidic channels for low or high
surfactant contents [30].

B. Experiments

Experimentally, we test the validity of our phenomeno-
logical model by performing systematic measurements of the
droplet velocity and pressure drop of periodic trains of
monodisperse droplets flowing through millifluidic circular
cross-section conduits. To do so, we use an assembly of
custom-built modules made of Plexiglas connected to each
other by means of calibrated cylindrical glass capillaries or
commercial tubing (Fig. 2) [5,19]. The droplet generator is a
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FIG. 2. (Color online) (a) Schematic of the millifluidic setup.
Images of the flow (b) at the tip of the needle and (c) after dilution.

double capillary device [31]. It consists of a calibrated sy-
ringe needle (diameter 510 wm or 230 wm) centered in a
cylindrical capillary tube (radius r,=750 wm). Using two
syringe pumps (Harvard PHD 2000), the dispersed (water)
phase and continuous (oil) phase are, respectively, infused
through and around the central needle so that droplets form
at the tip of the needle with a constant rate of production f.
In these millifluidic experiments, the time 7=1/f separating
the formation of two consecutive droplets is typically on the
order of 1 s. By fine tuning both O, and Q’:, the respective
flow rates of water and oil, we control (), the droplet volume,
in the range 0.1-10 wul. An additional infusion of continuous
phase performed downstream at constant flow rate Q? in-
creases the distance between two successive droplets N\ while

keeping their size unchanged. The droplet volume = % and
the dilution can thus be controlled independently by chang-
ing the values of the various flow rates. We record films of
the moving droplets using a video camera (Edmund Optics
EO-1312C) at a typical acquisition rate of 50 frames/s, and
we use custom-written MATLAB image processing software
on these films to determine the droplet velocity U, and the
droplet interdistance A\ after dilution. The value of the pres-
sure drop AP of a tube portion of length L filled with n=§
droplets, is obtained with a commercial pressure sensor
(ASDX from Sensor Technics, France). We characterize the
influence of confinement on droplet flow by systematically
varying (). For simplicity’s sake, we present and discuss our
results in what follows in terms of p:r—rr, a dimensionless
number characterizing the droplet confinement where r
=(%)1/ 3, assuming the droplets remain nearly spherical
throughout the channel. In our experiments, the Reynolds
and capillary numbers at play are small (typically on the
order of 1072 and 107", respectively). We limit our studies to
situations where the droplets do not break up at the junction;
droplet fragmentation is a phenomenon previously reported
for microfluidic channels [32,33] and one that we have also
witnessed in our millifluidic experiments at capillary num-
bers larger than those used here.

In all our experiments [19], we have observed that the
droplet velocity varies linearly with the total flow rate (Qy
:Qd+Q’;+Q‘:) accordingly to U,= B%T. The dimensionless
coefficient B strongly depends on (), the droplet volume
(Fig. 3). We have noticed that 1 <B<2. For small values of
p, the variation in 8 with p is well described by the formula
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FIG. 3. B(O) and L, (®) versus p. The system is made of water
droplets (7;=1 mPas) in sunflower oil (7,=50 mPas). The
dashed line corresponds to the asymptotic model of [34]: B=2

—;—;% where 7/:%.

analytically derived by Hetsroni et al. [34] for an isolated
spherical droplet flowing in a cylindrical channel. The drop-
lets in our experiments are therefore sufficiently distant and
small so that they do not interact directly with each other and
do not rub against the walls with a friction that depends on
the capillary number, as in the Bretherton regime [27]. From
the measurement of AP, we compute the hydrodynamic re-
sistance F(L,Q,)\)=A—f; of the portion of tube length L filled
with n droplets of volume (). For any value of (), we note
that I'=T",(L)+n8,; where I', and &, are, respectively, the
hydrodynamic resistance of the tube with no droplets and the
excess hydrodynamic resistance added to the tube by the
presence of each droplet (see Fig. 3 in Engl et al. [19]). This
result is consistent with the prediction [Eq. (9)] of our model.
For sake of simplicity, we write F(L,Q,A):FD(L)(1+% .
Experimentally, we measure L; from the slope of % plotted

as a function of % [19]. The variation in L, with p is reported
in Fig. 3. As intuitively expected, we observe that large drop-
lets add more hydrodynamic resistance to the channel than
smaller ones. A closer look at our data reveals the existence
of two distinct regimes: L, strongly increases with p above a
critical value of confinement p.=0.7; whereas its value is
essentially zero below p.. To conclude, these simple experi-
ments performed in millifluidic conduits allow a direct mea-
sure of both L; and B, and the results we obtained are well
supported by our phenomenological model.

Implementing a standard pressure measurement (using a
commercial device) in microfluidic channels remains diffi-
cult due to dead volumes and long transient regimes [35-37].
Although several groups have reported clever ways to mea-
sure small pressures in microfluidic devices [38—40], to the
best of our knowledge, the pressure drop induced by a train
of droplets remains ill documented in the literature despite its
importance for microfluidics [37]. By contrast, the pressure
drops of bubbles along rectangular microchannels are now
well documented [30]. In the next section, we will present an
indirect measure of L;, and we will show that the model
presented above still holds for microfluidics.
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FIG. 4. Schematic representation of the asymmetric loop used in
our experiments and simulations.

III. DROPLETS TRAFFIC IN AN ASYMMETRIC LOOP
A. Introduction

To address the general issue of traffic droplet flows in
microfluidic networks, we consider the simplest situation
where a periodic train of monodisperse droplets flows
through an asymmetric loop. We consider a case where the
two arms of the loop have different lengths L; <L, but the
same cross sections shown schematically in Fig. 4. Similar
circuits have been studied in the context of blood flow to
understand the phenomenon of plasma skimming [41-43], to
study the fragmentation of droplets [32,44], the splitting of a
stream [45], the dynamics of repartition of droplets at a bi-
furcation [15], or for the design of a micromixer [46].

This geometry is the microfluidic analog of the milliflu-
idic asymmetric 7 junction used in our previous work [19] to
investigate droplet traffic at a simple junction. However, in
contrast to the circular cross section of the millifluidic sys-
tem, the microfluidic channels present a rectangular cross
section. This difference that has important consequences on
the flow characteristics will be discussed later in the text.

In this section, we aim to (i) derive the phenomenological
model we had briefly introduced in Ref. [19] and discuss the
various assumptions made, (ii) show that this model is well
suited for understanding and describing traffic flows in mi-
crofluidic network, and (iii) demonstrate that the partitioning
of droplets at a junction offers an indirect measurement of
the hydrodynamic resistance length.

B. Numerical simulations

We first address this problem with a numerical model in-
spired by the work of Ref. [15]. We will next study how the
droplets statistically divide between the two branches of the
asymmetric loop, namely, what is the probability P, that a
droplet bifurcates toward the longest arm? We limit our
analysis to the collective hydrodynamic feedback or resistor
regime obtained when the droplets are sufficiently large and
diluted so that no collisions occur at the inlet junction of the
loop [47]. In our analysis of this problem, we assume that the
capillary and Reynolds numbers are small enough so that the
transport of droplets in the various arms is well accounted by
the simple theory developed in the first section of this paper.

We consider a simple system consisting of a single inlet
channel through which droplets emitted at a constant fre-
quency f :lT, where 7 is the (dimensionless) time step in our
simulation. In this inlet channel, the droplets travel at con-
stant velocity Ud=§, where N is the droplet interdistance.
The channel splits at a 7 junction into two arms forming a
loop whose respective lengths are L,>L; but whose cross
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section is the same. Assuming that the droplets do not split at
the junction, we numerically investigate their partitioning at
the junction. Our simulations are performed as follows. For
each time increment 7, a new droplet arrives at the junction.
It bifurcates into the outlet having the smallest instantaneous
hydrodynamic resmtance and it travels along this arm with a
constant velocity Ul /- Assuming that L, is the excess length
added by each droplet to a channel and neglecting the physi-
cal volume of the droplets (a good assumption if the volume
fraction is small), the hydrodynamic resistance of the branch
(i) is simply given by R;(n;)=a(L;+n;L,;), where n; is the
number of droplets contained in the branch (i) at the consid-
ered time and « a constant (having dimensions of Pa s m™),
function of the viscosity of the continuous phase and of the
geometrical parameters defining the channel cross section.
For rectangular channels, having width W and height H, at
low Reynolds number, it can be shown that a=12[1

'92H )]' , where 7 is the viscosity of the fluid
[48] Accordlngly to the model describing droplet transport
in a single channel (see Sec. II), we assume that the veloc1t?/

of the droplets flowing in the branches obeys U(’)— ,8 S
where QT is the total flow rate in branch (i). Wlthm this
framework, using the conservation of the total flow rate and
the equality of the pressure drop between the two branches
of the loop, one can show the velocities of the droplets in

R
the tvx;o( )branches are U(l)z dﬁ and U(Z)
ny

Udm Using these simple rules, our simulations are
performed as follows. Once a new droplet reaches the junc-
tion at time 7, the hydrodynamic resistances of the two out-
lets are computed and compared in order to determine the
droplet’s choice of route through the loop. The velocities of
the droplets in each branch of the loop are calculated. The
new positions of the droplets as well as the number of drop-
lets present in each branch are then evaluated at time ¢+ 7. If
one or several droplets exit the loop between ¢ and 7+ 7, the
number of droplets, their velocities, and their positions in
each branch are re-evaluated according to the various times
of the exits. Our simulations start with no droplets present in
the branches. After an initial transient regime, we observe
that the number of droplets n; present in each branch of the
loop fluctuates around their mean values (n,) and (n,) (see
Fig. 5). We verified that these stationary values are indeed
independent of the initial conditions.

When the train of droplets is diluted, i.e., when N in-
creases, our numerical simulations show that (n,) and (n,)
decrease [see Figs. 5(a)-5(c)]. Above a critical value A=\,
we observe no droplets flowing into the longest branch;
(ny)=0, as shown in Fig. 5(d). This observation corroborates
our previous results, showing the existence of a filter regime
where the droplets all collect into the smallest branch of the
loop and another regime (the repartition regime), where they
divide between both branches.

Next, we study the variation in (n;) and (n,) with A
shown in Fig. 6. In the repartition regime, we observe that
(n;)—{n,) is constant for given values of L, L,, and L, as
seen in the inset of Fig. 6. A systematic study of this differ-
ence as a function of L, shows that the difference in mean
droplet numbers satisfies the following relation (n;)—(n,)

Ly—

L . . . L.
=T L as illustrated in Fig. 7. This result indicates that the
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FIG. 5. The variation in n; (line and symbols) and 7, (continu-
ous line) versus time (in 7 unit). The time origin corresponds to the
entrance of the first droplet in the loop. The parameters (given in the
same arbitrary units) are L;=100 and L;=2.5, (a) A=2, (b) A=4.4,
(c) A=9, and (d) A=16. In these simulations, A=1.3.

hydrodynamic resistances of the two branches of the loop are
thus nearly equal once the steady state is reached since L;
+(n)Ly=Ly+(ny)Ly.
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FIG. 6. Shown are (n;) (O) and {n,) ((J) versus \ for L;=100,
L;=2.5 (given in the same arbitrary unit length), and I'=1.3. Inset:
shown is (n;—n,) versus \.

This result is quite surprising since it implies that the total
flow rate in the two branches is equal. Indeed, it is well
known for simple fluids, one would expect the total flow rate
to be larger in the shortest arm. We can therefore state that
U&”: Uflz):%'. This result can be verified by noting that the
mean retention times of the droplets flowing in both branches
vary as %T (see Fig. 8).

In the repartition regime, after reaching the steady state,
we compute the probability P, that a droplet flows through
the longest arm of the loop. We first work for a given value
of A=i—? and we vary L,; We have verified that the results
obtained for a given A do not differ significantly for different
values of L; provided that the fluctuations of the number of
droplets in each arm are small with respect to their mean
values. Figure 9 shows the variation in P, as a function of \
for different values of L, We note that all curves decrease
linearly with \; the curves have different slopes but all share
the same intercept. Plotted as a function of L}‘—d, we notice that
all our data collapse on the same straight line (see the inset of
Fig. 9).
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FIG. 7. The mean difference in the number of droplets in the
branches as a function of (L,—L;)/L,, for L;=100, L,=130 (O);
L,=100, L,=150 (OJ); and L;=200, L,=260 (< ). The lengths are
given in terms of the same arbitrary unit length. The line corre-
sponds to the relation {n;—n,)=(L,—L;)/L,.
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. . 2L,
plotted versus the respective normalized length =-.

In another set of numerical experiments, we impose L,
and study how P, changes with A\ for different values of L.
These data reported on Fig. 10 show that all curves decrease
linearly with \. It is worth noting that large values of A favor
the filter regime over repartition. Moreover, the different in-
tercepts for each curve indicate that the value P,(A=0) de-
pends solely on the channel length asymmetry ratio A and
not on L.

0.5 T T T

FIG. 9. The probability P, of a droplet flowing into the longer
branch versus \ for A=1.3 and different values of L,. The values of
L, are 1(O), 1.5 (O), 2 (©),2.5 (A), 3 (V), and 4.5 (X). The
different lengths are expressed in the same arbitrary unit. For each

data set, we use L;=400 Inset: shown is P, versus LL,
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0.5

FIG. 10. The probability P, versus A for L;=2.5 and different
values of A. The values of A are 1.5 (O), 1.3 (), 1.2 (¢), and
1.16 (A). For each data set, we use L;=400. The different lengths
are given in the same arbitrary unit.

In conclusion, our numerical model predicts (i) the exis-
tence of two distinct flow states, the filter and repartition
regimes; for a given set of A and L, the transition is deter-
mined by a critical value of A=\, and (ii) that the total flow
rates in each branch of the loop are equal in the repartition
regime.

C. Analytical model

A rapid analysis of the numerical problem reveals the ex-
istence of only four parameters (L, L,, L;, and \), all having
dimensions of a length. We therefore expect our numerical
findings to exhibit universality in terms of at most three di-
mensionless numbers. We thus now derive analytically ex-
pressions for P, and A, in terms of these dimensionless num-
bers. Using assumptions identical to those of the numerical
model, one may write for each arm of the loop,

' (i)
Ui'=p5 =\, (11)

where UEP:)\Lf,-, Qg), \;, and f; are, respectively, the droplet
velocity and the total flow rate in the arm (i), the mean
distance, and the frequency of passage between two succes-
sive droplets flowing in arm (i) (with i=1 or 2).

The droplet volume is given by

fi  f

with QEP is the flow rate of dispersed phase in arm (i). Since
the hydrodynamic resistance in each arm is given by

Q (12)

AP L[""’l[L Li L
S bents L L)
T KS KS \;
we can write
L L
A(1+—"> $>=(1+—") M, (14)
Y Ay

From the conservation of the dispersed phase Qd=Q£11)
+QE,2), one obtains the following relation f|+f,=f. Inserting
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FIG. 11. (A+1)P, as a function of (A_l)zLLd' The symbols are
the same as in Fig. 10. All data collapse onto a single master curve.

this expression in the conservation of the total flow rate, we
find

1 1 2
—t—=Z, (15)
AN A

Our numerical results have shown that the total flow rates
in each arm are equal. This relation reduces the latter equa-
tion to

L L
A<1+—‘1)=1+—d. (16)
Ay A

By solving the system of Egs. (15) and (16), one obtains
the following expressions for A,:

11 (2 A-1) 2 1
— )2 (17)
N, A+I\N L, )N N

Using this expression and the equality of the flow rates in
each arm U(Z):)\Zfzzgf, we find

1 B A—l)
2"f"A+1<1 7‘2Ld ' (18)

To verify this relation, we replot the numerical results pre-
sented in Fig. 10 using renormalized axes. As shown in Fig.
11, when we plot (A+1)P, as a function of (A—l)ﬁ, we
note that all data collapse onto a single master curve, in
agreement with our analytical model and indicating the uni-
versal nature of the problem. The probability that a droplet
bifurcates toward the longest arm then decreases linearly
with N. Above a critical value )\f, all droplets are directed
toward the smallest arm; this is the filter regime,

A-1"

D. Experimental results

We test the validity of our phenomenological model with
a series of microfluidic channels whose central feature is an
asymmetric loop. The channels are cast using standard poly-
dimetylsiloxane soft lithography methods [49]. Using two
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FIG. 12. (Color online) Schematic of the microfluidic chip used
to study droplet traffic at a 7" junction.

syringe pumps (Harvard PHD2000), the droplets are formed
in a “flow focusing” geometry [21], where the droplet size
can be controlled by changing the respective flow rates Q’:
and Q, of the continuous and dispersed phases or by chang-
ing the dimensions of the flow constriction. An additional
syringe pump is used to add or remove volumes of the con-
tinuous phase through supplementary dilution channels to
independently control the distance between successive drop-
lets. Similarly to the millifluidic experiments, we denote the
flow rate of continuous phase arriving or exiting through the
dilution channels as QZI. Finally, the behavior of the droplets
at the channel bifurcation is monitored with a high-speed
camera (Phantom V7) with a typical acquisition rate on the
order of 1000 frames/s. In our microfluidic experiments, the
time 7=1/f separating the formation of two consecutive
droplets is typically on the order of 0.02 s. A schematic of
our device is shown in Fig. 12. Images of the concentration/
dilution module used to change the interdroplet distance A\
and the filter and repartition regimes are shown in Fig. 13.
We use hexadecane and distilled water as the continuous and
disperse phases, respectively, and a small amount of a com-
mercial surfactant (Span 80, 0.3 wt %) is added to the oil
phase to hinder droplet coalescence. In these experiments,
the Reynolds and capillary numbers are, respectively, on the
order of 1072—10"" and 1072, roughly the same as those

| i (b)

{1
| )

P——o— ——o= || = B = LA
}- 500 m P{ . 500 pum.

FIG. 13. (a) Images of the concentration/dilution module. Im-
ages of the (b) filter regime and the (c) repartition regime observed
at the loop inlet.
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FIG. 14. Droplet speed U, in the entry channel (V), short arm
(@), and long arm (O) as a function of the total flow rate for p
=1.3. Each line represents the best linear fit through the origin.
Inset: speed in each bifurcation arm Uf,i) normalized by the droplet
speed in the entry channel.

found in our millifluidic investigations. Note, however, that
the presence of this surfactant implies that the water-oil in-
terface is “solid” in contrast to experiments described in Sec.
II for which the interface is “fluid.”

We perform experiments on channels with three different
length asymmetry ratios A=1.1, 1.2, and 1.3. Nevertheless,
all channels have the same cross section, with a width W
=90 wm and a height H=29 um. The noncircular cross sec-
tion makes a straightforward determination of the confine-
ment parameter p problematic. However, as the channel
height is much smaller than its width, the droplets are always
strongly confined vertically, with 1> H> for all our experi-
ments. Therefore, we are able to focus our investigations
onto the effect of lateral confinement within the channel and
define p=2—v;, where r is the radius of the quasicylindrical or
“sandwiched” droplet. We find that the droplet speed U, var-
ies linearly with the total applied flow rate O, as shown for
the entry channel and the long and short arms of the bifur-
cation in Fig. 14. We further note that within the repartition
regime, the droplet speeds in the two arms are the same and
approximately one-half the entry speed, as seen in the inset
of Fig. 14, in agreement with our numerical simulations. Us-

ing the relation U,= ,B%T, we extract the dimensionless speed
coefficient 8. For deformable droplets in a channel with a
circular cross section, 1 <f<2 for all droplet sizes. These
limits can be understood simply by considering the proper-
ties of Poiseuille flow in cylindrical channels. When the
droplets are small, they are centered in the channel, where it
is well known that the flow speed approaches its maximum,
or twice the average flow speed. On the other hand, when the
droplet is large and blocks the channel, it moves at the same
average velocity as the entire fluid mixture. By contrast, for
our droplets in channels with a rectangular cross section, we
find that 8 decreases below 1 for p> 1, as seen in the inset of
Fig. 15. This behavior is similar to that observed for gas
bubbles in rectangular channels [17], where the value of 8
can be less than one, depending on the surfactant concentra-
tion in the continuous phase. This implies that the continuous
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FIG. 15. Droplet speed U, versus total flow rate Qr for three
different values of the confinement factor p; p=0.81 (H), p=1.08
(V¥), and p=1.11 (A). Each line represents the best linear fit through
the origin. Inset: dimensionless speed factor 3 as a function of p.

phase is able to flow around the edges or “gutters” of the
elliptical droplet and points to the importance of corner flows
in determining the motion of the dispersed phase.

To compare our experimental results on the partition of
droplets at the 7 junction to our model and our simulations,
we measure the probability of a droplet traveling down the
long arm of the bifurcation for several droplet sizes. The
results for A=1.1, 1.2, and 1.3 are shown in Figs.
16(a)-16(c); indeed, the data show good agreement with a fit
to Eq. (18) (solid lines). In this way, passively monitoring the
choice of direction of successive droplets at the T junction
allows us to measure the hydrodynamic resistance L, of a
single droplet. As a simple test of the consistency of our
results, we use the L, extracted as a fit parameter and renor-
malize the probability as (A+1)P, and the distance as (A
_1)2%, as in the case of the simulations, and we observe a
collapse of all data sets onto a single master curve, as seen in
Fig. 16(d). We thus confirm the validity of our model over
the range of the confinement parameter 0.8=p=1.4 for
these rectangular microchannels.

We estimate the hydrodynamic resistance L, for all com-
binations of A and p and plot the results in Fig. 17. Our
experiments show that L; reaches an asymptotic value of
zero when p decreases below roughly 0.7 but that the hydro-
dynamic resistance increases rapidly as the dispersed phase
begins to nearly block the channel. Indeed, for p>1, the
presence of even a single droplet adds a significant effective
length to the channel, as L; quickly approaches values of 1
mm, whereas the length of channels in a branching network
is typically not much larger than a few tens of millimeters.

IV. CONCLUSION

In conclusion, we have shown that many of the character-
istics of immiscible two-phase flows in capillary networks
can be captured by a simple analytical model. Our model is
derived using straightforward assumptions about the trans-
port of droplets within constant cross-section cylindrical
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FIG. 16. Probability P, versus interdroplet distance for different
droplet sizes (symbols) for (a) A=1.1, (b) A=1.2, and (c) A=1.3;
the lines are fits to Eq. (18). (d) The renormalized probability for
A=1.1 (A), A=1.2 (O), and A=1.3 (O) collapses onto a single
master curve.

channels at low Reynolds and capillary numbers. With this
approach, flows of droplets are characterized by two phe-
nomenological parameters: the hydrodynamic resistance
length L,; added by each droplet to the conduit and the non-
dimensional droplet mobility coefficient 8 defined as the ra-
tio of the droplet velocity to the mean flow velocity of the
fluids. Systematic experiments performed in millifluidic
channels show the validity of this model.

Using this phenomenological approach, we have per-
formed numerical simulations to study the partitioning of
droplets at an asymmetric loop. Assuming that a droplet
reaching the inlet bifurcation flows into the branch having
the smallest instantaneous hydrodynamic resistance, our re-
sults show the existence of two hydrodynamic regimes
whose transition is governed by A, the droplet interdistance
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FIG. 17. Dimensionless speed coefficient B (@) and resistance
length L, as a function of confinement p [L; is given for A=1.1
(A), A=1.2(0), and A=1.3 (O)]. The dotted line is a guide for the
eyes.

in the inlet channel. For large values of A, all droplets flow
into the short branch, as its hydrodynamic resistance is al-
ways smaller. By contrast, for smaller interdroplet distances,
the presence of a large number of droplets in the shorter
branch substantially increases the hydrodynamic resistance,
leading to the partitioning of droplets between both branches.
Our results furthermore show that the probability that a drop-
let flows into the longest arm exhibits a universal behavior in
terms of N, L,, and A, a nondimensional coefficient charac-
terizing the asymmetry of the loop, a result that can also be
derived analytically. Of course, this analysis is valid pro-
vided that the droplets are sufficiently distant, i.e., that \ is
large enough, where the model of distinct flow regions is
correct. In addition, when the drops are close to one another,
another mechanism of partitioning comes into play; traffic is
then dominated by droplet collisions at the junction [47]. In
performing both millifluidic and microfluidic experiments,
we have shown the essential validity of our model and simu-
lations. We are able to directly measure the droplet hydrody-
namic resistance using a pressure sensor in the millifluidic
case or, alternatively, by passively monitoring the probabili-
ties governing the droplet repartitioning in the microfluidic
experiments, we are able to extract L, In both cases, we
observe that L, increases sharply once the droplets reach a
certain critical size. Furthermore, we observe that the rectan-
gular geometry of the microfluidic channels can affect the
droplet mobility, as the dispersed phase travels slower than
the average flow speed when the droplets are large.

Finding elegant solutions for the passive mixing and sort-
ing of droplets moving through branched microfluidic net-
works is a great challenge. Understanding the contribution of
individual droplets to the global flow behavior of the net-
work is essential to the clever design of such systems
[50-52]. We have identified the parameters that are important
to tune, i.e., A and p, to modify significantly droplet traffic
behavior. Our results emphasize the important role that the
droplet size and channel geometry play in determining the
flow traffic in capillary networks and should aide the design
of more complicated devices, and they pave the way for
more systematic studies on the contribution of the fluid vis-
cosity and surfactant concentration to the hydrodynamic re-
sistance.
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